Laman

Game Reward

Game Reward

Friday, 3 August 2012

pelajaran kimia kelas X.1

Bab1
Hidrokarbon(KIMIA)
Hidrokarbon yang paling sederhana adalah alkana, yaitu hidrokarbon yang hanya mengandung ikatan kovalen tunggal. Hidrokarbon merupakan senyawa yang struktur molekulnya terdiri dari hidrogen dan karbon. Molekul yang paling sederhana dari alkana adalah metana. Metana berupa gas pada suhu dan tekanan baku, merupakan komponen utama gas alam (Wilbraham, 1992).

Hidrokarbon dapat diklasifikasikan menurut macam-macam ikatan karbon yang dikandungnya. Hidrokarbon dengan karbon-karbon yang mempunyai satu ikatan dinamakan hidrokarbon jenuh. Hidrokarbon dengan dua atau lebih atom karbon yang mempunyai ikatan rangkap dua atau tiga dinamakan hidrokarbon tidak jenuh (Fessenden, 1997).

Hidrogen dan senyawa turunannya, umumnya terbagi menjadi tiga kelompok besar yaitu:

1. Hidrogen alifatik terdiri atas rantai karbon yang tidak mencakup bangun siklik. Golongan ini sering disebut sebagai hidrokarbon rantai terbuka atau hidrokarbon siklik. Contoh hidrokarbon alifatik yaitu :

C2H6 (etana) CH3CH2CH2CH2CH3 (pentana)

2. Hidrokarbon alisiklik atau hidrokarbon siklik terdiri atas atom karbon yang tersusun dalam satu lingkar atau lebih.

3. Hidrokarbon aromatik merupakan golongan khusus senyawa siklik yang biasanya digambarkan sebagai lingkar enam dengan ikatan tunggal dan ikatan rangkap bersilih–ganti. Kelompok ini digolongkan terpisah dari hidrokarbon asiklik dan alifatik karena sifat fisika dan kimianya yang khas (Syukri, 1999).

Sebagai hidrokarbon jenuh, semua atom karbon dalam alkana mempunyai empat ikatan tunggal dan tidak ada pasangan elektron bebas. Semua elektron terikat kuat oleh kedua atom. Akibatnya, senyawa ini cukup stabil dan disebut juga parafin yang berarti kurang reaktif (Wilbraham, 1992). 

Karbon-karbon dari suatu hidrokarbon dapat bersatu sebagai suatu rantai atau suatu cincin. Hidrokarbon jenuh dengan atom-atomnya bersatu dalam suatu rantai lurus atau rantai yang bercabang diklasifikasikan sebagai alkana. Suatu rantai lurus berarti dari tiap atom karbon dari alkana akan terikat pada tidak lebih dari dua atom karbon lain. Suatu rantai cabang alkana mengandung paling sedikit sebuah atom karbon yang terikat pada tiga atau lebih atom karbon lain (Fessenden, 1997).

Alkana rantai lurus:

CH3 – CH2 - CH3 


Alkana rantai cabang :


CH3 – CH – CH2 – CH3

CH3


Senyawa berbobot molekul rendah berwujud gas dan cair, dan zat yang berbobot molekul tinggi berwujud padat. Alkana merupakan zat nonpolar, zat yang tak larut dalam air dengan kerapatan zat cair kurang dari 1,0 g/ml. Selain alkana juga ada alkena yaitu hidrokarbon yang memiliki satu atau lebih ikatan rangkap dua karbon–karbon. Senyawa ini dikatakan tidak jenuh karena tidak mempunyai jumlah maksimum atom yang sebetulnya dapat ditampung oleh setiap karbon (Pettruci, 1987).

Hidrokarbon alifatik berasal dari minyak bumi sedangkan hidrokarbon aromatik dari batu bara. Semua hidrokarbon, alifatik dan aromatik mempunyai tiga sifat umum, yaitu tidak larut dalam air, lebih ringan dibanding air dan terbakar di udara (Wilbraham, 1992)



Alkana yang merupkan hidrokarbon tak jenuh yang berasal dari aldehid dapat direaksikan dengan asetaldehid, logam Zn dan dalam suasana asam ditambahkan H2SO4, setelah dilakukannya penambahan H2SO4 maka terjadi perubahan warna berubah menjadi coklat kehitaman, pekat logam Zn yang adapun menjadi larut akibat pengaruh H2SO4. Reaksi ini dinamakan Reduksi Clemensen, adapun reaksinya sebagai berikut: 


O


CH3 – C – H Zn + H2SO4 C2H6


Logam Zn disini berfungsi sebagai reduktor, sedangkan H2SO4 pekat berfungsi sebagai oksidator. Hal inilah yang menyebabkan terjadinya perubahan warna. Asetaldehid merupakan golongan dari aldehid yang mudah tereduksi menjadi senyawa dengan jumlah atom yang sama banyaknya. Logam Zn yang ditambahkan berfungsi sebagai reduktor (mengalami oksidasi), sedangkan larutan H2SO4 pekat sebagai oksidator (mengalami reduksi).








misi gas yang mempunyai pengaruh terhadap kesehatan manusia dan juga pemanasan global seringkali tidak merupakan prioritas dalam setiap kebijakan yang dibuat oleh banyak negara di dunia. Sebenarnya seberapa parahkah akibat yang ditimbulkan emisi gas ini dapat kita telusuri berikut ini.

Sejatinya, emisi gas yang berasal dari hasil bakaran dalam kegiatan manusia merupakan konsekuensi kehidupan sehari-hari di planet bumi ini. Emisi gas yang terjadi, pun bukan semata-mata berasal dari kegiatan manusia, tapi juga dari proses alami. Misalnya, pada pernafasan daun, letusan gunung berapi, proses kehidupan alamiah di hutan, kebakaran spontan dalam hutan, dan proses biokimia yang terjadi di rawa. Gas yang diemisikan secara alami ini, menurut Dr. dr. Rachmadhi Purwaka SKM dari Fakultas Kesehatan Masyarakat Universitas Indonesia, Jakarta, merupakan bagian dari proses daur ulang yang selalu terjadi secara dinamik dalam rangka menuju keseimbangan alamiah.


“Selama jumlah emisi gas hasil bakaran itu masih dalam batas-batas kesanggupan alam mendaur-ulangkan kembali, emisi gas tidak akan mengganggu secara nyata kehidupan di bumi. Namun, apabila peningkatan gas akibat kegiatan manusia telah melampau kepasitas daur ulang alami, tentu saja menyebabkan penumpukan gas, tidak hanya pada lingkungan mikro, tetapi juga telah menyebabkan goyahnya keseimbangan lingkungan makro, di antaranya dalam bentuk pemanasan global yang secara tidak langsung berakibat pada kesehatan masyarakat,” ungkap Rachmadhi.

Di samping efek gas yang tidak langsung itu, jenis-jenis kandungan gas emisi itu pun berpotensi menimbulkan akibat secara langsung terhadap kesehatan masyarakat.

Kehadiran beberapa komponen gas emisi yang terbentuk dari kendaraan bermotor (gas karbon monoksida, gas nitrogen, dan gas gas-gas nitrogen oksida, serta gas-hidrokarbon) dan ini merupakan bahan xenobiotic (zat asing bagi tubuh manusia), juga menimbulkan berbagai macam gangguan kesehatan pada manusia secara langsung. Karbon monoksida, misalnya, akan menimbulkan gangguan pada sistem pengangkutan oksigen dalam tubuh. Gas-gas nitrogen oksida merupakan gas yang berpotensi menurunkan imunitas tubuh, dan gas-gas hidrokarbon, jelas dapat menimbulkan iritasi, gangguan sistem tubuh dan kanker.

Pemanasan Global
Menurut Rachmadhi, pemanasan global mulai disadari ketika kira-kira pada dekade 1960-an sampai 1970-an, para ahli dihadapkan dengan data mengenai terhentinya pendinginan udara. Sebelumnya, bumi mengalami pendinginan dengan laju setengah derajat setiap tahunnya. Tetapi, proses pemanasan global yang ketika itu terdeteksi di belahan bumi bagian utara, menyebabkan proses pendinginan bumi terhenti. Sejak itu, kondisi ini berlanjut dengan pemanasan global yang menjurus kepada peningkatan suhu udara.

Para ahli yang tergabung dalam badan the National Oceanographic and Atmospheric Administration di Amerika Serikat, lalu percaya bahwa pemanasan global terjadi akibat penumpukan gas karbon dioksida di atmosfir lapisan atas sebagai hasil bakaran dalam kegiatan manusia. Kehadiran gas karbon dioksida dalam jumlah yang banyak ini seakan menjadi peredam bagi albedo atau derajat refleksi bumi terhadap sinar matahari yang memungkinkan bumi terhindar dari panas yang berlebihan. Refleksi bumi terhadap sinar matahari itu terjadi karena pemantulan sinar matahari oleh partikel-partikel debu, awan, permukaan air, hamparan salju, dan es.

Di samping gas karbon dioksida, beberapa gas lain juga diketahui turut dalam pemanasan global itu. Gas-gas yang dimaksud, antara lain, gas ozon yang terdapat pada atmosfir lapisan bawah, gas metana, gas-gas klorofluorokarbon, gas-gas nitrogen oksida, dan uap air. Awan yang merupakan penangkis sinar matahari pemanas bumi, ternyata juga menghalangi pelepasan panas yang dipantulkan bumi sehingga turut berperan dalam proses pemanasan global.

Menurut Rachmadhi, diketahui bahwa karbon dioksida mempunyai kontribusi terbesar dalam pengaruhnya terhadap pemanasan global, yaitu sebanyak 49 persen, sedangkan gas metana hanya 18 persen, gas-gas klorofluorokarbon 14 persen, gas-gas nitrogen oksida 6 persen, dan gas-gas lainnya sebesar 13 persen. Dengan demikian, dapat dikatakan bahwa dari segala macam gas penyebab terjadinya pemanasan global, gas karbon dioksida merupakan gas yang paling membahayakan. Sebaliknya, pemanasan global oleh gas karbon dioksida melalui greenhouse effect itu, merupakan prakondisi bagi kehidupan manusia dan kebanyakan hewan. Seandainya proses ini tidak terjadi, suhu rata-rata udara di permukaan bumi adalah minus 20 derajat Celcius.

Namun, dalam periode waktu belakangan ini, bumi mendapat pasokan berlebihan gas-gas itu. Pembakaran hutan dan bahan bakar fosil, kegiatan industri, pembangkit tenaga, dan emisi kendaraan bermotor mengkontribusikan gas karbon dioksida dan gas-gas lainnya ke atmosfir. “Pemasokan gas-gas ini terjadi secara berlebihan dan terkonsentrasi pada tempat-tempat tertentu”, tegasnya.


Akibat Adanya Peningkatan Jumlah Manusia dan Pembangunan
Peningkatan jumlah manusia dan aselerasi pembangunan yang mengiringinya, menimbulkan tuntutan tersedianya bahan pangan yang berlipat-lipat kali banyak dibanding masa-masa lalu. Pola bercocok tanam tradisional tidak sanggup lagi memenuhi desakan kebutuhan pangan dunia, sehingga pola pertanian mengalami revolusi yang memaksa terjadinya penebasan hutan untuk keperluan lahan bercocok tanam dan tempat hunian.

Dengan pembukaan lahan pertanian yang menyebabkan dibongkarnya hutan penyerap gas karbon dioksida melalui proses asimilasi, peningkatan kadar gas karbon dioksida di atmosfir menjadi lebih tak terkendali. Dalam keadaan biasa hutan dan tumbuhan pada umumnya merupakan salah satu unsur yang berperan mentranformasikan gas karbon dioksida menjadi bahan-bahan keperluan pertumbuhan bagi tanaman dalam daur-ulang karbon. “Menurut perkiraan, bila kondisi lain mendukung, diperlukan tanaman 20 milyar pohon setiap tahun untuk dapat menyerap 67 persen emisi tahunan gas karbondioksida di Amerika Serikat,” katanya.

Di samping karbon dioksida, gas-gas klorofluorokarbon, yang merupakan kelompok gas buatan manusia, juga mempunyai pengaruh terhadap dalam pemanasan global. Gas-gas klorofluorokarbon bukan merupakan emisi gas hasil bakaran kegiatan manusia. Kelompok gas ini dibuat untuk beberapa keperluan, di antaranya, sebagai bahan pendingin (diklorodifluorometana atau freon), bahan pelarut dalam industri, bahan pencuci komponen elektronik, bahan tambahan pada cat yang mudah menguap, bahan pembuatan karet busa plastik (karet busa poliuretana), dan tabung semprot aerosol. “Walaupun jumlah gas klorofluorokarbon jauh lebih sedikit daripada jumlah gas karbon dioksida, setiap molekul gas klorofluorokarbon berpotensi menimbulkan greenhouse effect sebesar 10 ribu kali dibandingkan dengan molekul gas karbon dioksida,” tegasnya.

Sekali masuk ke atmosfer, gas klorofluorokarbon dapat bertahan antara 75 tahun sampai dengan 110 tahun. Sementara berada di sana, gas ini akan beraksi melenyapkan gas ozon perisai pelindung bumi terhadap sinar matahari berlebihan. Akibat kelebihan sinar matahari ini berpengaruh terhadap timbulnya perubahan-perubahan pada iklim, kehidupan satwa dan flora. Fitoplankton dan algae bahan makanan untuk ikan dimatikan oleh sinar matahari berlebih ini. Akibatnya, penyerapan gas kardon dioksida oleh banyaknya flora air yang mati ini pun turut berkurang.

Pemanasan global berlebihan merupakan juga proses yang menimbulkan beberapa efek pada faktor lingkungan kehidupan manusia, seperti kemungkinan pencairan gunung-gunung es yang akan menenggelamkan beberapa bagian daratan, perubahan iklim yang berakibat pada kelangkaan pangan penduduk. Lanjutan akibat yang perlu diperhitungkan adalah terjadinya migrasi penduduk bumi seperti yang terjadi pada zaman es di masa purbakala dengan potensi kekacauan sosial umat manusia secara global.

Meningkatnya suhu permukaan bumi akan mengakibatkan adanya perubahan iklim yang sangat ekstrim di bumi. Hal ini dapat mengakibatkan terganggunya hutan dan ekosistem lainnya, sehingga mengurangi kemampuannya untuk menyerap karbon dioksida di atmosfer. Pemanasan global mengakibatkan mencairnya gunung-gunung es di daerah kutub yang dapat menimbulkan naiknya permukaan air laut. Efek rumah kaca juga akan mengakibatkan meningkatnya suhu air laut sehingga air laut mengembang dan terjadi kenaikan permukaan laut yang mengakibatkan negara kepulauan akan mendapatkan pengaruh yang sangat besar.

Menurut perhitungan simulasi, efek rumah kaca telah meningkatkan suhu rata-rata bumi 1-5°C. Bila kecenderungan peningkatan gas rumah kaca tetap seperti sekarang akan menyebabkan peningkatan pemanasan global antara 1,5-4,5°C sekitar tahun 2030. Dengan meningkatnya konsentrasi gas CO2 di atmosfer, maka akan semakin banyak gelombang panas yang dipantulkan dari permukaan bumi diserap atmosfer. Hal ini akan mengakibatkan suhu permukaan bumi menjadi meningkat.
buka aja di web http://sahri.ohlog.com/hidrokarbon.cat3518.html

tes HK

1. Bagaimanakah rumus umum alkena dan alkuna?


5. Tuliskan rumus struktur 1-pentena dan 1-butuna!
7. Tuliskan rumus struktur 3-metil-1-heksuna!











Senyawa Hidrokarbon











- Senyawa hidrokarbon siklik adalah senyawa karbon yang rantai C nya melingkar dan lingkaran itu mungkin juga mengikat rantai samping. Golongan ini terbagi lagi menjadi senyawa alisiklik dan aromatik.
· senyawa alisiklik yaitu senyawa karbon alifatik yang membentuk rantai tertutup.
· Senyawa aromatik yaitu senyawa karbon yang terdiri dari 6 atom C yang membentuk rantai benzena.



Sifat-Sifat Hidrokarbon

Meliputi : a) Sifat-Sifat Fisis 
b) Sifat Kimia Berkaitan dengan reaksi kimia.
1) Reaksi-reaksi pada Alkana 
Alkana tergolong zat yang sukar bereaksi sehingga disebut parafinyang artinya afinitas kecil . Reaksi terpenting dari alkana adalah reaksi pembakaran, substitusi dan perengkahan ( cracking ).
Penjelasan : 
a. Pembakaran 
Pembakaran sempurna alkana menghasilkan gas CO 2 dan uap air, sedangkan pembakaran tidak sempurna menghasilkan gas CO dan uap air, atau jelaga (partikel karbon).
b. Substitusi atau pergantian 
· Atom H dari alkana dapat digantikan oleh atom lain, khususnyagolongan halogen .
· Penggantian atom H oleh atom atau gugus lain disebut reaksi substitusi .
· Salah satu reaksi substitusi terpenting dari alkana adalahhalogenasi yaitu penggantian atom H alkana dengan atom halogen, khususnya klorin ( klorinasi ).
· Klorinasi dapat terjadi jika alkana direaksikan dengan klorin.
c. Perengkahan atau cracking 
§ Perengkahan adalah pemutusan rantai karbon menjadi potongan-potongan yang lebih pendek.
§ Perengkahan dapat terjadi bila alkana dipanaskan pada suhu dan tekanan tinggi tanpa oksigen .
§ Reaksi ini juga dapat dipakai untuk membuat alkena dari alkana .Selain itu juga dapat digunakan untuk membuat gas hidrogen dari alkana .
2) Reaksi-reaksi pada Alkena 
Alkena lebih reaktif daripada alkana. Hal ini disebabkan karena adanya ikatan rangkap C=C.
Reaksi alkena terutama terjadi pada ikatan rangkap tersebut. Reaksi penting dari alkena meliputi : reaksi pembakaran, adisi danpolimerisasi .

Penjelasan : 
a. Pembakaran 
§ Seperti halnya alkana, alkena suku rendah mudah terbakar. Jika dibakar di udara terbuka, alkena menghasilkan jelaga lebih banyak daripada alkana. Hal ini terjadi karena alkena mempunyai kadar C lebih tinggi daripada alkana, sehingga pembakarannya menuntut / memerlukan lebih banyak oksigen.
§ Pembakaran sempurna alkena menghasilkan gas CO 2 dan uap air.
b. Adisi (penambahan = penjenuhan) 
Reaksi terpenting dari alkena adalah reaksi adisi yaitu reaksi penjenuhan ikatan rangkap .
c. Polimerisasi 
· Adalah reaksi penggabungan molekul-molekul sederhana menjadi molekul yang besar.
· Molekul sederhana yang mengalami polimerisasi disebut monomer , sedangkan hasilnya disebut polimer .
· Polimerisasi alkena terjadi berdasarkan reaksi adisi .
· Prosesnya dapat dijelaskan sebagai berikut :
ü Mula-mula ikatan rangkap terbuka sehingga terbentuk gugus dengan 2 elektron tidak berpasangan.
ü Elektron-elektron tidak berpasangan tersebut kemudian membentuk ikatan antar gugus sehingga membentuk rantai.
3) Reaksi-reaksi pada Alkuna 
Reaksi-reaksi pada alkuna mirip dengan alkena; untuk menjenuhkan ikatan rangkapnya, alkuna memerlukan pereaksi 2 kali lebih banyak dibandingkan dengan alkena.
Reaksi-reaksi terpenting dalam alkena dan alkuna adalah reaksi adisi dengan H 2, adisi dengan halogen (X 2 ) dan adisi dengan asam halida (HX).
Pada reaksi adisi gas HX (X = Cl, Br atau I) terhadap alkena dan alkuna berlaku aturan Markovnikov yaitu :
“ Jika atom C yang berikatan rangkap mengikat jumlah atom H yang berbeda, maka atom X akan terikat pada atom C yang sedikit mengikat atom H ”
“ Jika atom C yang berikatan rangkap mengikat jumlah atom H sama banyak, maka atom X akan terikat pada atom C yang mempunyai rantai C paling panjang “

Keisomeran

Isomer adalah senyawa-senyawa yang mempunyai rumus molekul yang sama tetapi mempunyai struktur atau konfigurasi yang berbeda .
Struktur berkaitan dengan cara atom-atom saling berikatan, sedangkan konfigurasi berkaitan dengan susunan ruang atom-atom dalam molekul.
Keisomeran dibedakan menjadi 2 yaitu :
Keisomeran struktur : keisomeran karena perbedaan struktur.
Keisomeran ruang : keisomeran karena perbedaan konfigurasi (rumus molekul dan strukturnya sama).
Keisomeran Struktur 
Dapat dibedakan menjadi 3 yaitu :
· keisomeran kerangka : jika rumus molekulnya sama tetapi rantai induknya (kerangka atom) berbeda.
· keisomeran posisi : jika rumus molekul dan rantai induknya (kerangka atom) sama tetapi posisi cabang / gugus penggantinya berbeda.
· keisomeran gugus fungsi
Keisomeran Ruang 
Dapat dibedakan menjadi 2 yaitu :
keisomeran geometri : keisomeran karena perbedaan arah (orientasi) gugus-gugus tertentu dalam molekul dengan struktur yang sama.
keisomeran optik .
A. Keisomeran pada Alkana 
Tergolong keisomeran struktur yaitu perbedaan kerangka atom karbonnya. Makin panjang rantai karbonnya, makin banyak pula kemungkinan isomernya.
Pertambahan jumlah isomer ini tidak ada aturannya. Perlu diketahui juga bahwa tidak berarti semua kemungkinan isomer itu ada pada kenyataannya.
Misalnya : dapat dibuat 18 kemungkinan isomer dari C 8 H 18, tetapi tidak berarti ada 18 senyawa dengan rumus molekul C 8 H 18 .
Cara sistematis untuk mencari jumlah kemungkinan isomer pada alkana :
B. Keisomeran pada Alkena 
Dapat berupa keisomeran struktur dan ruang. 
a) Keisomeran Struktur. 
§ Keisomeran struktur pada alkena dapat terjadi karena perbedaan posisi ikatan rangkap atau karena perbedaan kerangka atom C.
§ Keisomeran mulai ditemukan pada butena yang mempunyai 3 isomer struktur. Contoh yang lain yaitu alkena dengan 5 atom C.
b) Keisomeran Geometris.
Ø Keisomeran ruang pada alkena tergolong keisomeran geometris yaitu : karena perbedaan penempatan gugus-gugus di sekitar ikatan rangkap.
Contohnya : 
Keisomeran pada 2-butena. Dikenal 2 jenis 2-butena yaitu cis -2-butena dan trans -2-butena. Keduanya mempunyai struktur yang sama tetapi berbeda konfigurasi (orientasi gugus-gugus dalam ruang).
Pada cis -2-butena, kedua gugus metil terletak pada sisi yang sama dari ikatan rangkap; sebaliknya pada trans -2-butena, kedua gugus metil berseberangan.
Ø Tidak semua senyawa yang mempunyai ikatan rangkap pada atom karbonnya (C=C) mempunyai keisomeran geometris. Senyawa itu akan mempunyai keisomeran geometris jika kedua atom C yang berikatan rangkap mengikat gugus-gugus yang berbeda.
C. Keisomeran pada Alkuna 
Keisomeran pada alkuna tergolong keisomeran kerangka danposisi .
Pada alkuna tidak terdapat keisomeran geometris.
Keisomeran mulai terdapat pada butuna yang mempunyai 2 isomer.

Alkuna

Adalah hidrokarbon alifatik tak jenuh yaitu hidrokarbon dengan satu ikatan rangkap tiga (–C≡C–) . Senyawa yang mempunyai 2 ikatan rangkap 3 disebut alkadiuna, yang mempunyai 1 ikatan rangkap 2 dan 1 ikatan rangkap 3 disebut alkenuna .
Rumus umum alkuna yaitu : C n H 2n-2 ; n = jumlah atom C
Tata Nama Alkuna 
Nama alkuna diturunkan dari nama alkana yang sesuai dengan mengganti akhiran –ana menjadi –una .
Tata nama alkuna bercabang sama seperti penamaan alkena.
Sumber dan Kegunaan Alkuna 
Alkuna yang mempunyai nilai ekonomis penting hanyalah etuna (asetilena), C 2 H 2 . Gas asetilena digunakan untuk mengelas besi dan baja.
  • Posted: Sun 28 Feb, 2010 GMT
  • In: Hidrokarbon
  • Permalink : Alkuna
  • Comments: 7
  • Viewed 1158 times.

Alkena

Adalah hidrokarbon alifatik tak jenuh yaitu hidrokarbon dengan satu ikatan rangkap dua (–C=C–) . Senyawa yang mempunyai 2 ikatan rangkap 2 disebut alkadiena, yang mempunyai 3 ikatan rangkap 2 disebut alkatriena dst.
Rumus umum alkena yaitu : C n H 2n ; n = jumlah atom C
Tata Nama Alkena 
1) Nama alkena diturunkan dari nama alkana yang sesuai (yang jumlah atom Cnya sama), dengan mengganti akhiran –ana menjadi –ena .
2) Rantai induk adalah rantai terpanjang yang mengandung ikatan rangkap.
3) Penomoran dimulai dari salah 1 ujung rantai induk sedemikian sehingga ikatan rangkap mendapat nomor terkecil.
4) Posisi ikatan rangkap ditunjukkan dengan awalan angka yaitu nomor dari atom C berikatan rangkap yang paling tepi / pinggir (nomor terkecil).
5) Penulisan cabang-cabang, sama seperti pada alkana.
Sumber dan Kegunaan Alkena 
Alkena dibuat dari alkana melalui proses pemanasan atau dengan bantuan katalisator (cracking). Alkena suku rendah digunakan sebagai bahan baku industri plastik, karet sintetik, dan alkohol.
  • Posted: Sun 28 Feb, 2010 GMT
  • In: Hidrokarbon
  • Permalink : Alkena
  • Comments: 3
  • Viewed 1139 times.

Alkana

Adalah hidrokarbon alifatik jenuh yaitu hidrokarbon dengan rantai terbuka dan semua ikatan antar atom karbonnya merupakan ikatan tunggal.
Rumus umum alkana yaitu : n H 2n+2 ; n = jumlah atom C

Deret Homolog Alkana 
Adalah suatu golongan / kelompok senyawa karbon dengan rumus umum yang sama, mempunyai sifat yang mirip dan antar suku-suku berturutannya mempunyai beda CH 2 .
Sifat-sifat deret homolog :
Mempunyai sifat kimia yang mirip
Mempunyai rumus umum yang sama
Perbedaan Mr antara 2 suku berturutannya sebesar 14
Makin panjang rantai karbon, makin tinggi titik didihnya

rumus nama rumus nama 
CH 4 metana C 6 H 14 heksana 
C 2 H 6 etana C 7 H 16 heptana 
C 3 H 8 propana C 8 H 18 oktana 
C 4 H 10 butana C 9 H 20 nonana 
C 5 H 12 pentana C 10 H 22 dekana 

Sifat-sifat Alkana
  1. merupakan senyawa nonpolar, sehingga tidak larut dalam air
  2. makin banyak atom C (rantainya makin panjang), maka titik didih makin tinggi
  3. pada tekanan dan suhu biasa, CH 4 - C 4 H 10 berwujud gas, C 5H 12 - C 17 H 36 berwujud cair, diatas C 18 H 38 berwujud padat
  4. mudah mengalami reaksi subtitusi dengan atom-atom halogen (F 2, Cl 2, Br 2 atau I 2 )
  5. dapat mengalami oksidasi (reaksi pembakaran)

Isomer Alkana
Alkana yang mempunyai rumus molekul sama, tetapi rumus struktur beda
CH 4, C 2 H 6, C 3 H 8 tidak mempunyai isomer
alkana 
jumlah isomer
C 4 H 10 2 
C 5 H 12 3 
C 6 H 14 5 
C 7 H 16 9 
C 8 H 18 28 
C 9 H 20 35 
C 10 H 22 75 

Tata Nama Alkana 
Berdasarkan aturan dari IUPAC (nama sistematik) :
1) Nama alkana bercabang terdiri dari 2 bagian :
Bagian pertama (di bagian depan) merupakan nama cabang
Bagian kedua (di bagian belakang) merupakan nama rantai induk
2) Rantai induk adalah rantai terpanjang dalam molekul. Jika terdapat 2 atau lebih rantai terpanjang, maka harus dipilih yang mempunyai cabang terbanyak. Induk diberi nama alkana sesuai dengan panjang rantai.
3) Cabang diberi nama alkil yaitu nama alkana yang sesuai, tetapi dengan mengganti akhiran –ana menjadi –il. Gugus alkil mempunyai rumus umum : n H 2n+1 dan dilambangkan dengan R
4) Posisi cabang dinyatakan dengan awalan angka. Untuk itu rantai induk perlu dinomori. Penomoran dimulai dari salah 1 ujung rantai induk sedemikian rupa sehingga posisi cabang mendapat nomor terkecil.
5) Jika terdapat 2 atau lebih cabang sejenis, harus dinyatakan dengan awalan di, tri, tetra, penta dst.
6) Cabang-cabang yang berbeda disusun sesuai dengan urutan abjad dari nama cabang tersebut. Awalan normal, sekunder dan tersierdiabaikan. Jadi n-butil, sek-butil dan ters-butil dianggap berawalan b-.
Awalan iso- tidak diabaikan. Jadi isopropil berawal dengan huruf i- .
Awalan normal, sekunder dan tersier harus ditulis dengan huruf cetak miring .
7) Jika penomoran ekivalen dari kedua ujung rantai induk, maka harus dipilih sehingga cabang yang harus ditulis terlebih dahulu mendapat nomor terkecil.
Berdasarkan aturan-aturan tersebut di atas, penamaan alkana bercabang dapat dilakukan dengan 3 langkah sebagai berikut :
1) Memilih rantai induk, yaitu rantai terpanjang yang mempunyai cabang terbanyak.
2) Penomoran, dimulai dari salah 1 ujung sehingga cabang mendapat nomor terkecil.
3) Penulisan nama, dimulai dengan nama cabang sesuai urutan abjad, kemudian diakhiri dengan nama rantai induk. Posisi cabang dinyatakan dengan awalan angka. Antara angka dengan angka dipisahkan dengan tanda koma (,) antara angka dengan huruf dipisahkan dengan tanda jeda (-).
Atau lebih singkatnya adalah:
  1. Jika rantai lurus, nama sesuai dengan jumlah alkana dengan awalan n-(alkana)
  2. Jika rantai cabang;
    1. Tentukan rantai terpanjang (sebagai nama alkana)
    2. Tentukan rantai cabangnya (alkil)
    3. Pemberian nomor dimulai dari atom C yang paling dekat dengan cabang
    4. Alkil-alkil sejenis digabung dengan awalan di(2), tri(3), dst
    5. Alkil tak sejenis ditulis berdasar abjad (butil, etil, metil,..) atau dari yang paling sederhana (metil, etil, propil,....)
Gugus Alkil
Alkana yang telah kehilangan 1 atom H
C n H 2n+1 


Sumber dan Kegunaan Alkana 
Alkana adalah komponen utama dari gas alam dan minyak bumi.
Kegunaan alkana, sebagai :
· Bahan bakar
· Pelarut
· Sumber hidrogen
· Pelumas
· Bahan baku untuk senyawa organik lain
· Bahan baku industri
  • Posted: Sun 28 Feb, 2010 GMT
  • In: Hidrokarbon
  • Permalink : Alkana
  • Comments: 3
  • Viewed 1839 times.

HIDROKARBON

A. Kekhasan / Keunikan Atom Karbon 
Sesuai dengan nomor golongannya (IVA), atom karbon mempunyai 4 elektron valensi. Oleh karena itu, untuk mencapai konfigurasi oktet maka atom karbon mempunyai kemampuan membentuk 4 ikatan kovalen yang relatif kuat.
Atom karbon dapat membentuk ikatan antar karbon; berupa ikatan tunggal, rangkap dua atau rangkap tiga.
Atom karbon mempunyai kemampuan membentuk rantai (ikatan yang panjang).
Rantai karbon yang terbentuk dapat bervariasi yaitu : rantai lurus, bercabang dan melingkar ( siklik ).

B. Kedudukan Atom Karbon 
Dalam senyawa hidrokarbon, kedudukan atom karbon dapat dibedakan sebagai berikut :
· Atom C primer : atom C yang mengikat langsung 1 atom C yang lain
· Atom C sekunde r : atom C yang mengikat langsung 2 atom C yang lain
· Atom C tersier : atom C yang mengikat langsung 3 atom C yang lain
· Atom C kuarterner : atom C yang mengikat langsung 4 atom C yang lain
C. Klasifikasi / Penggolongan Hidrokarbon (terdiri dari atom C dan H)
a. Berdasarkan bentuk rantai karbonnya : 
§ Hidrokarbon alifatik = senyawa hidrokarbon dengan rantai terbuka jenuh (ikatan tunggal) maupun tidak jenuh (ikatan rangkap).
§ Hidrokarbon alisiklik = senyawa hidrokarbon dengan rantai melingkar / tertutup (cincin).
§ Hidrokarbon aromatik = senyawa hidrokarbon dengan rantai melingkar (cincin) yang mempunyai ikatan antar atom C tunggal danrangkap secara selang-seling / bergantian ( konjugasi ).
b. Berdasarkan jenis ikatan antar atom karbonnya :
Ø Hidrokarbon jenuh = senyawa hidrokarbon yang ikatan antar atom karbonnya merupakan ikatan tunggal.
Ø Hidrokarbon tak jenuh = senyawa hidrokarbon yang memiliki 1 ikatan rangkap dua (alkena), atau lebih dari 1 ikatan rangkap dua (alkadiena), atau ikatan rangkap tiga (alkuna).


ikatan antar atom

dalam post atom dan molekul juga berpasangan kita sudah membahas atom akan terikat dengan atom yang lain untuk membentuk unsur atau molekul. pertanyaan awal: Kenapa atom harus terikat dengan atom yang lain?

Pada susunan berkala unsur kita mengenal ada satu golongan yang letaknya paling kanan yaitu golongan VIIIA yang dinemai golongan gas mulia, dinamai begitu karena mereka adalah atom yang sudah stabil,  artinya tidak perlu lagi berikatan dengan atom yang lain. Boleh kita asumsikan mereka seperti orang-orang suci yang sudah stabil mungkin para nabi dan rosul ya…? mungkin bisa dikatakan stabil karena kalau ditinggal sendiri pun mereka tetap beriman dan tidak akan kesusahan hidup, anteng aja.
kembali ke atom, gas mulia menjadi stabil karena mereka memiliki 8 elektron pada kulit paling luar (kaidah oktet), kecuali Helium yang punya 2 (kaidah doblet). Jadinya atom lain akan dikatakan stabil pula bila memiliki jumlah elektron 8 pada kulit paling luar (untuk kulit L, M, N, dan O) atau 2 bila untuk kulit K.
Nah persoalan ini yang diusahakan oleh para atom, sehingga untuk mencapai itu atom dapat melakukan dua macam hal yaitu: berubah menjadi ION atau BERIKATAN dengan atom yang lain.Yang paling umum, atau yang bisa dilakukan oleh semua atom adalah berikatan. Samakan dengan manusia?
kita sudah sering baca di buku-buku kalau ikatan antar atom ini ada 3 macam, yaitu:
. ikatan ionik
. ikatan kovalen
ikatan logam
 Dalam beberapa hal pembentukan ikatan kimia terjadi karena perpindahan satu atau lebih elektron dari satu atom ke atom lain. Hal ini mendorong terjadinya pembentukan ion positif dan ion negative dan terbentuknya satu jenis ikatan diantara kedua ion tersebut yang disebut ikatan ion.
Ikatan diantara atom-atom dalam molekul yang terjadi karena adanya pemakaian bersama pasangan electron disebut ikatan kovalenNonprolar adalah ikatan selain ikatan polar dan koordinasi. Polar yaitu perbedaan muatan positif dan negative terjadi pengkutuban muatan. Koordinasi terbentuk apabila pasangan electron ikatan hanya berasal dari salah satu atom yang berikatan. Atom – atom yang berbeda mempunyai gaya tarik (terhadap pasangan electron ikatan) yang berbeda pula ukuran kekuatan gaya tarik ini dinyatakan dengan keelektronegatifan. Jika atom-atom yang berikatan memiliki keelektronegatifan yang berbeda, maka pasangan electron ikatan itu lebih dekat kepada atom dengan keelektronegatifan yang lebih besar. Ikatan yang terbentuk antara atom dengan keelektronegatifan yang berbeda disebut ikatan kovalen poliatom.
Ikatan logam terjadi karena adanya interaksi antara ion positif pada logam (inti dan electron pada kulit yang lebih dalam) dengan electron valensinya.
susah ya bahasanya…??? kita bahas masing-masing ya di post lain

JENIS-JENIS IKATAN KIMIA

Ikatan kimia merupakan sebuah proses fisika yang bertanggungung jawab dalam gaya interaksi tarik menarik antara dua atom atau molekul yang menyebabkan suatu senyawa diatomik atau poliatomik menjadi stabil. Secara umum, ikatan kimia dapat digolongkan menjadi dua jenis, yaitu:
A. Ikatan antar atom:
1. Ikatan ion = heteropolar
Ikatan ionik adalah sebuah gaya elektrostatik yang mempersatukan ion-ion dalam suatu senyawa ionik. Ion-ion yang diikat oleh ikatan kimia ini terdiri dari ka2tion dan juga anion. Kation terbentuk dari unsur-unsur yang memiliki energi ionisasi rendah dan biasanya terdiri dari logam-logam alkali dan alkali tanah. Sementara itu, anion cenderung terbentuk dari unsur-unsur yang memiliki afinitas elektron tinggi, dalam hal ini unsur-unsur golongan halogen dan oksigen. Oleh karena itu, dapat dikatakan bahwa ikatan ion sangat dipengaruhi oleh besarnya beda keelektronegatifan dari atom-atom pembentuk senyawa tersebut. Semakin besar beda keelektronegatifannya, maka ikatan ionik yang dihasilkan akan semakin kuat. Ikatan ionik tergolong ikatan kuat, dalam hal ini memiliki energi ikatan yang kuat sebagai akibat dari perbedaan keelektronegatifan ion penyusunnya.
Pembentukan ikatan ionik dilakukan dengan cara transfer elektron. Dalam hal ini, kation terionisasi dan melepaskan sejumlah elektron hingga mencapai jumlah oktet yang disyaratkan dalam aturan Lewis. Selanjutnya elektron yang dilepaskan ini akan diterima oleh anion hingga mencapai jumlah oktet. Proses transfer elektron ini akan menghasilkan suatu ikatan ionik yang mempersatukan ion anion dan kation.
Sifat-Sifat ikatan ionik adalah:
        a. Bersifat polar sehingga larut dalam pelarut polar
        b. Memiliki titik leleh yang tinggi
        c. Baik larutan maupun lelehannya bersifat elektrolit
2. Ikatan kovalen = homopolar
Ikatan kovalen merupakan ikatan kimia yang terbentuk dari pemakaian elektron bersama oleh atom-atom pembentuk ikatan. Ikatan kovalen biasanya terbentuk dari unsur-unsur non logam. Dalam ikatan kovalen, setiap elektron dalam pasangan tertarik ke dalam nukleus kedua atom. Tarik menarik elektron inilah yang menyebabkan kedua atom terikat bersama.
Ikatan kovalen terjadi ketika masing-masing atom dalam ikatan tidak mampu memenuhi aturan oktet, dengan pemakaian elektron bersama dalam ikatan kovalen, masing-masing atom memenuhi jumlah oktetnya. Hal ini mendapat pengecualian untuk atom H yang menyesuaikan diri dengan konfigurasi atom dari He (2Ä“ valensi) untuk mencapai tingkat kestabilannya. Selain itu, elektron-elektron yang tidak terlibat dalam ikatan kovalen disebut elektron bebas. Elektron bebas ini berpengaruh dalam menentukan bentuk dan geometri molekul.
Ada beberapa jenis ikatan kovalen yang semuanya bergantung pada jumlah pasangan elektron yang terlibat dalam ikatan kovalen. Ikatan tunggal merupakan ikatan kovalen yang terbentuk 1 pasangan elektron. Ikatan rangkap 2 merupakan ikatan kovalen yang terbentuk dari dua pasangan elektron, beitu juga dengan ikatan rangkap 3 yang terdiri dari 3 pasangan elektron. Ikatan rangkap memiliki panjang ikatan yang lebih pendek daripada ikatan tunggal. Selain itu terdapat juga bermacam-macam jenis ikatan kovalen lain seperti ikatan sigma, pi, delta, dan lain-lain.
Senyawa kovalen dapat dibagi mejadi senyawa kovalen polar dan non polar. Pada senyawa kovalen polar, atom-atom pembentuknya mempunyai gaya tarik yang tidak sama terhadap elektron pasangan persekutuannya. Hal ini terjadi karena beda keelektronegatifan antara atom-atom penyusunnya. Akibatnya terjadi pemisahan kutub positif dan negatif. Sementara itu pada senyawa kovalen non-polar titik muatan negatif elekton persekutuan berhimpit karena beda keelektronegatifan yang kecil atau tidak ada.
image
Gambar Ikatan Kovalen pada metana
3. Ikatan kovalen koordinasi = semipolar
Ikatan kovalen koordinat merupakan ikatan kimia yang terjadi apabila pasangan elektron bersama yang dipakai oleh kedua atom disumbangkan oleh sala satu atom saja. Sementara itu atom yang lain hanya berfungsi sebagai penerima elektron berpasangan saja.
Syarat-syarat terbentuknya ikatan kovalen koordinat:
  1. Salah satu atom memiliki pasangan elektron bebas
  2. Atom yang lainnya memiliki orbital kosong
Susunan ikatan kovalen koordinat sepintas mirip dengan ikatan ion, namun kedua ikatan ini berbeda oleh karena beda keelektronegatifan yang kecil pada ikatan kovalen koordinat sehingga menghasilkan ikatan yang cenderung mirip kovalen.
4. Ikatan Logam
Ikatan logam merupakan salah satu ciri khusus dari logam, pada ikatan logam ini elektron tidak hanya menjadi miliki satu atau dua atom saja, melainkan menjadi milik dari semua atom yang ada dalam ikatan logam tersebut. Elektron-elektron dapat terdelokalisasi sehingga dapat bergerak bebas dalam awan elektron yang mengelilingi atom-atom logam. Akibat dari elektron yang dapat bergerak bebas ini adalah sifat logam yang dapat menghantarkan listrik dengan mudah. Ikatan logam ini hanya ditemui pada ikatan yang seluruhnya terdiri dari atom unsur-unsur logam semata.
B. Ikatan antar molekul
1. Ikatan hidrogen
Ikatan hidrogen merupakan gaya tarik menarik antara atom H dengan atom lain yang mempunyai keelektronegatifan besar pada satu molekul dari senyawa yang sama. Ikatan hidrogen merupakan ikatan yang paling kuat dibandingkan dengan ikatan antar molekul lain, namun ikatan ini masih lebih lemah dibandingkan dengan ikatan kovalen maupun ikatan ion.
Ikatan hidrogen ini terjadi pada ikatan antara atom H dengan atom N, O, dan F yang memiliki pasangan elektron bebas. Hidrogen dari molekul lain akan bereaksi dengan pasangan elektron bebas ini membentuk suatu ikatan hidrogen dengan besar ikatan bervariasi. Kekuatan ikatan hidrogen ini dipengaruhi oleh beda keelektronegatifan dari atom-atom penyusunnya. Semakin besar perbedaannya semakin besar pula ikatan hidrogen yang dibentuknya.
Kekuatan ikatan hidrogen ini akan mempengaruhi titik didih dari senyawa tersebut. Semakin besar perbedaan keelektronegatifannya maka akan semakin besar titik didih dari senyawa tersebut. Namun, terdapat pengecualian untuk H2O yang memiliki dua ikatan hidrogen tiap molekulnya. Akibatnya, titik didihnya paling besar dibanding senyawa dengan ikatan hidrogen lain, bahkan lebih tinggi dari HF yang memiliki beda keelektronegatifan terbesar.
2. Ikatan van der walls
Gaya Van Der Walls dahulu dipakai untuk menunjukan semua jenis gaya tarik menarik antar molekul. Namun kini merujuk pada gaya-gaya yang timbul dari polarisasi molekul menjadi dipol seketika. Ikatan ini merupakan jenis ikatan antar molekul yang terlemah, namun sering dijumpai diantara semua zat kimia terutama gas. Pada saat tertentu, molekul-molekul dapat berada dalam fase dipol seketika ketika salah satu muatan negatif berada di sisi tertentu. Dalam keadaa dipol ini, molekul dapat menarik atau menolak elektron lain dan menyebabkan atom lain menjadi dipol. Gaya tarik menarik yang muncul sesaat ini merupakan gaya Van der Walls.

Struktur Ikatan Atom


Ikatan Ionik 
Suatu logam dikatakan stabil, jika atom  tersebut mempunyai konfigurasi elektron seperti konfigurasi elektron pada gas mulia yaitu terdapat delapan elektron pada skell tea lower (dua elektron bila atom mempunyai hanya satu skell). Jika suatu atom hanya memilki satu elektron pada skell teabar maka ia cenderung melepas elektron tersebut. Dan skell yang lebih ke dalam yang perlakuaannya sudah penuh akan menjadi skell tealoar. Hal ini yang menyebabkan suatu atom menjadi lebih satabil tetapi hal ini juga menyebabkan atom itu kelebihan atom proton (yang bermuatan positif) sehingga atom tersebut akan bermuatan positif dan atom tersebut berubah menjadi ion positif. Sebaliknya bila suatu atom yang memiliki tujuh elektron skell terluarnya maka akan cenderung menerima satu elektron lagi dari luar. Jika hal ini terjadi maka atom tersebut akan bermuatan negatif (karena kelebihan elektron).  Jika kedua atom ini berdekatan maka akan terjadi tarik-menarik karena kedua ion tersebut memiliki muatan listrik yang berlawanan. Ikatan ini disebut juga dengan ikatan ion.

Ikatan Kovalen
 
Beberapa atom dapat memperoleh konfigurasi elektron yang stabil dengan saling meminjamkan elektronnya. Dengan saling meminjamkan elektron dari atom, atom akan memperoleh susunan elektron yang stabil tanpa menyebabkan menjadi bermuatan. Ikatan atom terjadi melalui elektron yang saling dipinjamkan itu. Elektron ini masih memiliki ikatan atom aslinya, tetapi juga sudah terikat atom yang meminjamnya.

Ikatan Logam 
 
Dalam atom juga terjadi saling meminjamkan elektron, hanya saja jumlah atom yang bersama-sama saling meminjamkan elektron valensinya (elektron berada pada skell tealoar) itu tidak hanya antara 2 atom tetapi dalam beberapa atom dalam jumlah yang tak terbatas. Setiap atom menyerahkan elektron valensinya untuk digunakan bersama. Dengan demikian akan ada ikatan tarik-menarik antara atom-atom yang saling berdekatan. Jarak antar atom ini akan tetap (kondisi yang sama). Bila ada atom yang bergerak menjauh maka gaya tarik-menarik akan menariknya kembali seperti semula dan bila bergerak terlalu mendekat maka akan timbul gaya tolak-menolak karena atom bergerak terlalu dekat padahal muatan listriknya sama, sehingga kedudukan atom relatif terhadap atom lain akan tetap. Ikatan seperti ini dinamakan ikatan logam. Pada ikatan ini inti-inti atom terletak beraturan dengan jarak tertentu sedangkan elektron yang dipinjamkan seolah-olah membentuk “kabut elektron” yang mengisi sela-sela inti.


KEKRISTALAN KUBIK/PADATAN

Ada beberapa bentuk sistem kekristalan yang ada dalam bentuk kubik. Kristal-kristal tersebut dapat dilihat pada gambar Kristal kubik/padatan Simple Cubic, Body Centered Cubic (BCC), dan Face Centered Cubic (FCC) dibawah ini.
Bahan padat dapat diklasifikasikan berdasarkan keteraturan susunan atom-atom atau ion-ion penyusunnya. Bahan yang tersusun oleh deretan atom-atom yang teratur letaknya dan berulang (periodik) disebut bahan kristal. Dikatakan bahwa bahan kristal mempunyai keteraturan atom berjangkauan panjang. Sebaliknya, zat padat yang tidak memiliki keteraturan demikian disebut bahan amorf atau bukan-kristal.
Bahan kristal, untuk yang selanjutnya cukup disebut kristal (saja), dapat dibentuk dari larutan, lelehan, uap, atau gabungan dari ketiganya. Bila proses pertumbuhannya lambat, atom-atom atau pertikel penyusun zat padat dapat menata diri selama proses tersebut untuk mrenempati posisi yang sedemikian sehingga energi potensialnya minimum. Keadaan ini cenderung membentuk susunan yang teratur dan juga berulang pada arah tiga dimensi, sehingga terbentuklah keteraturan susunan atom dalam jangkauan yang jauh, inilah yang mencirikan keadaan kristal.
Sebaliknya, dalam proses pembentukan yang berlangsung cepat, atom-atom tidak mempunyai cukup waktu untuk menata diri dengan teratur. Hasilnya terbentuklah susunan yang memiliki tingkat energi yang lebih tinggi. Susunan atom ini umumnya hanya mempunyai keteraturan yang berjangkauan terbatas, dan keadaan inilah yang mencerminkan keadaan amorf. Dalam bahan amorf, jangkauan keteraturan atom biasanya sampai tetangga kedua.
Di antara kedua kristal sempurna (tunggal) di satu pihak, dan keadaan omorf di pihak lain, terdapat keadaan yang disebut polikristal (kristal jamak). Zat padat pada keadaan ini tersusun oleh kristal-kistal kecil. Bila ukuran kristalnya dalam ukuran orde mikrometer, bahan yang bersangkutan termasuk kristal mikro (microcrystalline); dan bila ukuran kristalnya dalam orde nanometer, maka bahannya digolongkan sebagai kristal nano (nanocrystalline).
BAB I KEKRISTALAN ZAT PADAT I- 2
Fisika zat padat secara umum dihubungkan dengan kristal dan elektron dalam kristal. Pengkajian tentang zat padat dimulai pada tahun-tahun awal abad ini sesudah berhasil dipelajarinya difraksi sinar-x oleh kristal. Dari gejala ini dapat ditemukan baukti bahwa kristal terdiri dari atom-atom yang susunannya teratur. Melalui keberhasilan memodelkan susunan atom-atom dalam kristal, para fisikawan dapat mempelajari lebih banyak dan lebih lanjut tentang zat padat. Dalam perkembangan selanjutnya, pengkajian zat padat telah meluas pada bahan bukan kristal (amorf), bahan gelas, dan bahkan bahan cair. Bidang yang lebih meluas ini dikenal sebagai fisika materi terkondensasi (condensed matter physics), dan kini telah menjadi bidang pengkajian yang paling luas dalam ilmu fisika.
1.1 IKATAN ATOM
Gaya apakah yang mempertahankan atom-atom dalam kristal agar tetap bersatu ? Gaya elektrostatik tarik-menarik antara muatan negatif elektron dan muatan positif inti atom adalah yang menjadi penyebab timbulnya gaya pemersatu (kohesi) dalam zat padat. Sementara itu gaya magnet sangat kecil pengaruhnya pada kohesi, dan gaya gravitasi bahkan dapat diabaikan efeknya. Di pihak lain, adanya interaksi pertukaran, sepeti gaya van der waals dan lkatan kovalen memberikan sumbangan yang berarti pada kohesi kristal.
Energi kohesi kristal didefinisikan sebagai energi yang diperlukan untuk memecah/ memisahkan kristal menjadi komponen-komponennya yang berupa atom netral yang bebas. Apabila komponen-komponen kristal berupa ion positif dan ion negatif, maka energi ohesi lebih tepat disebut energi kisi. Hal ini banyak dijumpai pada ikatan ionik.
Berdasarkan cara atom-atom berikatan satu sama lain dalam membentuk kristal, dapat dibedakan : ikatan ionik, ikatan kovalen, ikatan logam, ikatan van der Waals, dan ikatan hidrogen. Selanjutnya, jenis-jenis ikatan yang bersangkutan akan diuraikan satu-persatu sebagia berikut.
BAB I KEKRISTALAN ZAT PADAT I- 3
1.1.1 Ikatan Ionik
Ikatan ionik terbentuk karena adanya gaya tarik-menarik elektrostatik (Coulomb) antara ion positif dan ion negatif. Terbentuknya ion-ion tersebut disebabkan oleh terjadinya transfer elektron antar atom-atom yang membentuk ikatan. Beberapa contoh kristal ionik antara lian : NaCl, CsCl, KBr, NaI, dst. Untuk NaCl, elektron pada atom Na ditransfer kepada atom Cl :


Manfaat Nanoteknologi

 
Nanoteknologi ?
Mungkin masih sedikit kurang familiar di kalangan masyarakat tetapi tahukah anda bahwa Nanoteknologi mempunyai banyak manfaat dan kegunaan,
Kebanyakan Nanoteknologi memanfaatkan pengaruh interface dan quantum pada aplikasinya.sehingga Nano ini bersifat multifungsional, jika anda masih penasaran dengan manfaat teknologi Nano ini, dan jika anda bila anda juga masih ragu-ragu akan manfaat teknologi ini alangkah baiknya kita mengenal manfaat-manfaat Nano teknologi seperti yang dibawah ini :

1. Efek Interface/antarmukaa.    Efek Lotus.
Lotus adalah tanaman yang daunnya mempunyai daya tolak yang tinggi terhadap air dan minyak. Permukaan daunnya mengandung gabungan antaran crystal lilin dengan kekasaran mikro dan nano. Gabungan struktur dan kimia ini menyebabkan permukaan daun lotus mempunyai properti yang unik. Larutan yang sangat lengket maupun yang sangat viskos tetap tidak menempel pada permukaan daun. Nanoteknologi dapat digunakan untuk meniru efek ini sehingga bisa digunakan untuk keperluan teknologi.

b.    Mudah untuk di bersihkan.
Masalah kontaminasi permukaan adalah penyebaran ketika berhadapan pada permukaan yang mempunyai energy yang tinggi seperti gelas dan metal yang mempunyai tendensi untuk menyerap molekul lain. Strategi yang umum digunakan adalah dengan mengurangi energy bebas permukaan tanpa mempengaruhi property material nya. Secara umum tingkat repelancy air dan oli meningkat pada saat sudut kontak air diatas 100o. Fenomena ini bisa ditemui pada Teflon dimana air tidak bisa terikat pada permukaannya. Pendekatan baru adalah dengan menggunakan nanokomposit organic/inorganic yang mempunyai property seperti Teflon.

c.    Anti-Graffiti.
Masalah utama pada plaster, batu bata dan beton adalah kekuatan penyerapannya yang merupakan media yang sangat bagus untuk graffiti. Metode umum yang digunakan untuk memecahkan masalah ini adalah dengan menggunakan poly-urethane coating yang memberikan perlindungan permanen dan menghentikan cat dari permeasi kedalam beton. Ini dapat mengandung dua komponen yang bereaksi setelah penggunaan langsung pada dinding. Segala macam graffiti yang menempel pada permukaan coating akan dapat dihilangkan dengan mudah. Tetapi masih sedikit tentang nano yang digunakan untuk ini.

d.    Anti microbial coating.
Untuk melawan bakteri dan microbial lainnya, bahan kimia tertentu biasa digunakan. Ada dua pendekatan yang bisa digunakan untuk sanitasi permukaan yaitu pertama dengan menggunakan aktivitas fotokatalitik titanium oksida atau yang kedua dengan menggunakan toksifitas metal kation tertentu seperti perak. Perak telah lama diketahui sebagai anti microbial dengan cara melepaskan ion perak yang akan diambil oleh mikroba dan memberikan efek toksik. Pendekatan modern yaitu dengan mendispersikan perak pada ultra lembut nanopartikel. Peningkatan yang pesat pada luas permukaan akan menambah kemampuan sanitasi perak.

e.    Anti-fingerprint.
Permukaan metal seperti stainless steel akan mudah ternodai dengan sentuhan dari jari tangan sehingga akan mengurangi tingkat reflektansi material karena adanya lemak dari kulit. Meskipun pengaruh deposisi sidik jari tidak dapat dihindari, tetapi pelapisan dengan anti-fingerprint akan mengurangi tingkat penampakannya dengan mengkamuflasekannya. Refraktive index dari lapisan pelindung akan cocok dengan lemak. Sehingga anti fingerprint coating akan tampak lebih gelap bila tanpa coating.

f.    Anti-fog.
Membawa permukaan dingin ke lingkungan yang hangat akan menyebabkan terjadinya fogging. Pengaruh ini tak dapat dihindari meskipun permukaan telah dipanasi. Ini karena terbentuknya droplet yang sangat kecil pada permukaan cermin yang menyebabkan permukaan cermin menghamburkan cahaya dan bayangan. Suoerhidrophylic coating dapat mencegah terbentuknya droplet pada permukaan. Droplet akan bergabung membentuk lapisan tipis sehingga tidak mempengaruhi tingkat reflektansinya. Coating TiO2 adalah super hydrophilic pada saat terekspos pada cahaya UV yang cukup.

g.    Corrosion protection.
Baja pada manufaktur otomotif secara umum di heat treated pada temperature yang sangat tinggi. Hal ini akan menyebabkan baja terkorosi. Untuk memcegah korosi ini, coating dengan nanopartikel bisa dilakukan.

h.    Wear and tear protection.
Reduksi wear dan tear pada permukaan dengan kontak mekanik dapat dilakukan dengan mengurangi kontak atau memperkuat permukaan dengan coating. Koefisien friksi dapat dikurangi dengan pelapisan diamond like carbon coating.

i.    Scratch resistance.
Nanoparticles keras seperti silicon dioksida dapat digunakan untuk membuat permukaan anti gesek. Sebagai contoh mereka dapat dicampur dengan matrix organic untuk meningkatkan anti gesek pernis.
j.    Diffusion barrier.
Digunakan pada PET botol untuk menyimpan bir sehingga memperpanjang masa kadaluarsanya. Permeabilitas oksigen yang tinggi akan menyebabkan masa kadaluarsa yang pendek.

k.    Tensile strength / impact strength
Penambahan nanoparticles akan meningkatkan kekuatan tarik dan impact nya. Hal ini dapat dilihat pada penambahan karbon nanotube.

l.    Flame retardancy.
Nanoadditive dapat berfungsi sebagai flame retardancy pada polymer sehingga bisa menambah fungsi dari flame retardants.

m.    Konstruksi yang ringan.
Dengan mengurangi berat tetapi menambah kekuatan mekanisnya adalah tujuan yang umum untuk membuat material baru. Pada tataran ini, alloy nano merupakan material yang menjanjikan. Cara lain adalah dengan menambahkan carbon fiber pada polymer.

n.    Insulation.
Prinsip insulasi adalah berdasar pada porositas setinggi mungkin. Material harus mempunyai thermal conductivity yang rendah dan aliran bebas udara tidak diperkenankan. Semakin rendah densitasnya, semakin banyak udara yang masuk dan semakin bagus insulasinya. Dalam hal ini nanoporus memberikan properties yang superior. Silica aerogel adalah material yang mempunyai thermal konduktivity yang paling rendah dengan density yang kecil.

o.    Bond and disband of command
Pengeleman menjadi sangat penting pada proses produksi sekarang. Dengan menggunakan nanopartikel magnetic, proses pengeleman dapat dilakukan dengan memberikan medan elektromagnetik yang akan menyebabkan magnetic nanopartikel bergerak sehingga memberikan panas local yang berguna untuk pengeleman.

p.    Self-cleanig surfaces/photocatalitic surfaces.
Titani dapat digunakan untuk keperluan ini. Titania mempunyai 3 fase yang berbeda yaitu anatase, rutile dan brookite. Hanya dua material didepan yang biasa digunakan untuk aplikasi yang berbeda-beda. Anatase biasa digunakan untuk fotokatalis dan rutil digunakan untuk pigmen putih.

q.    UV protection.
TiO2 dan ZnO merupakan UV filter yang bagus.

r.    Sealing/dumping.
Memagnetkan fluida adalah sangat tidak mungkin, tetapi nanopartikel magnetic dapat didispersikan pada solvent menghasilkan suspensi magnetic.

s.    Dynamic viscosity/Thixotropy.
Nanopartikel dapat digunakan untuk mempengaruhi viskositas fluida. Digunakan untuk beberapa aplikasi seperti cat dimana viskositas yang lebih rendah diinginkan

 2. Quantum-mechanical effects

a.    Tunneling effect.
Tunneling effect ternadi pada saat material yang sangat kecil mempenetrasi barrier dengan menggunakan forbidden energy state klasik. Quantum mekanikal effect ini berdasar pada fakta bahwa partikel seperti electron harus dianggap sebagai gelombang daripada partikel bulat yang sangat kecil. Dengan menggunakan effect tunneling, alingan listrik akan mengalir melalui barier isolasi tipis pada saat tegangan diaplikasikan. Effect ini digunakan pada flash memory.

b.    GMR and TMR effect.
Giant magneto resistance (GMR) adalah berdasar pada scattering dependansi spin electron melalui lapisan ferromagnetic. TMR sama dengan GMR tetapi TMR menggunakan lapsan spacer sangan tipis non kondukting.

c.    Flourencensce nanoparticles.
Warna adalah pengaruh dari pewarna. Tetapi nanopartikel bisa memberikan warna yang lain. Emas nanopartikel membuat warna kemerah2an. Warna dari nanoparticles sangat stabil sehingga terhindar dari pelunturan. Semikonduktor tertentu dapat memberikan warna dari biru sampai kemerah2an yang dinamakan quantum dots.


Metalografi

Metalografi adalah suatu teknik atau metode persiapan material untuk mengukur, baik secara kuantitatif maupun kualitatif dari informasi-informasi yang terdapat dalam material yang dapat diamati, seperti fasa, butir, komposisi kimia, orientasi butir, jarak atom, dislokasi, topografi dan sebagainya. Adapun secara garis besar langkah-langkah yang dilakukan pada metalografi adalah:
  1. Pemotongan spesimen (sectioning)
    1. Pembikaian (mounting)
    2. Penggerindaan, abrasi dan pemolesan (grinding, abrasion and polishing)
    3. Pengetsaan (etching)
    4. Observasi pada mikroskop optik
    Pada metalografi, secara umum yang akan diamati adalah dua hal yaitu macrostructure (stuktur makro) dan microstructure (struktur mikro). Struktur makro adalah struktur dari logam yang terlihat secara makro pada permukaan yang dietsa dari spesimen yang telah dipoles. Sedangkan struktur mikro adalah struktur dari sebuah permukaan logam yang telah disiapkan secara khusus yang terlihat dengan menggunakan perbesaran minimum 25x.

    a. Pemotongan (Sectioning)
    Proses Pemotongan merupakan pemindahan material dari sampel yang besar menjadi spesimen dengan ukuran yang kecil. Pemotongan yang salah akan mengakibatkan struktur mikro yang tidak sebenarnya karena telah mengalami perubahan.
    Kerusakan pada material pada saaat proses pemotongan tergantung pada material yang dipotong, alat yang digunakan untuk memotong, kecepatan potong dan kecepatan makan. Pada beberapa spesimen, kerusakan yang ditimbulkan tidak terlalu banyak dan dapat dibuang pada saat pengamplasan dan pemolesan.

    b. Pembingkaian ( Mounting)
    Pembingkaian seringkali diperlukan pada persiapan spesimen metalografi, meskipun pada beberapa spesimen dengan ukuran yang agak besar, hal ini tidaklah mutlak. Akan tetapi untuk bentuk yang kecil atau tidak beraturan sebaiknya dibingkai untuk memudahkan dalam memegang spesimen pada proses pngamplasan dan pemolesan.
    Sebelum melakukan pembingkaian, pembersihan spesimen haruslah dilakukan dan dibatasi hanya dengan perlakuan yang sederhana detail yang ingin kita lihat tidak hilang. Sebuah perbedaan akan tampak antara bentuk permukaan fisik dan kimia yang bersih. Kebersihan fisik secara tidak langsung bebas dari kotoran padat, minyak pelumas dan kotoran lainnya, sedangkan kebersihan kimia bebas dari segala macam kontaminasi. Pembersihan ini bertujuan agar hasil pembingkaian tidak retak atau pecah akibat pengaruh kotoran yang ada.
    Dalam pemilihan material untuk pembingkaian, yang perlu diperhatikan adalah perlindungan dan pemeliharaan terhadap spesimen. Bingkai haruslah memiliki kekerasan yang cukup, meskipun kekerasan bukan merupakan suatu indikasi, dari karakteristik abrasif. Material bingkai juga harus tahan terhadap distorsi fisik yang disebabkan oleh panas selama pengamplasan, selain itu juga harus dapat melkukan penetrasi ke dalam lubang yang kecil dan bentuk permukaan yang tidak beraturan.

    c. Pengerindaan, Pengamplasan dan Pemolesan
    Pada proses ini dilakukan penggunaan partikel abrasif tertentu yang berperan sebagai alat pemotongan secara berulang-ulang. Pada beberapa proses, partikel-partikel tersebut dsisatukan sehingga berbentuk blok dimana permukaan yang ditonjolkan adalah permukan kerja. Partikel itu dilengkapi dengan partikel abrasif yang menonjol untuk membentuk titik tajam yang sangat banyak.
    Perbedaan antara pengerindaan dan pengamplasan terletak pada batasan kecepatan dari kedua cara tersebut. Pengerindaan adalah suatu proses yang memerlukan pergerakan permukaan abrasif yang sangat cepat, sehingga menyebabkan timbulnya panas pada permukaan spesimen. Sedangkan pengamplasan adalah proses untuk mereduksi suatu permukaan dengan pergerakan permukaan abrasif yang bergerak relatif lambat sehingga panas yang dihasilkan tidak terlalu signifikan.
    Dari proses pengamplasan yang didapat adalah timbulnya suatu sistim yang memiliki permukaan yang relatif lebih halus atau goresan yang seragam pada permukaan spesimen. Pengamplasan juga menghasilkan deformasi plastis lapisan permukaan spesimen yang cukup dalam.
    Proses pemolesan menggunakan partikel abrasif yang tidak melekat kuat pada suatu bidang tapi berada pada suatu cairan di dalam serat-serat kain. Tujuannya adalah untuk menciptakan permukaan yang  sangat halus sehingga bisa sehalus kaca sehingga dapat memantulkan cahaya dengan baik. Pada pemolesan biasanya digunakan pasta gigi, karena pasta  gigi mengandung Zn dan Ca yang akan dapat mengasilkan permukaan yang sangat halus. Proses untuk pemolesan hampir sama dengan pengamplasan, tetapi pada proses pemolesan hanya menggunakan gaya yang kecil pada abrasif, karena tekanan yang didapat diredam oleh serat-serat kain yang menyangga partikel.

    Pengetsaan (Etching)
    Etsa dilakukan dalam proses metalografi adalah untuk melihat struktur mikro dari sebuah spesimen dengan menggunakan mikroskop optik. Spesimen yang cocok untuk proses etsa harus mencakup daerah yang dipoles dengan hati-hati, yang bebas dari deformasi plastis karena deformasi plastis akan mengubah struktur mikro dari spesimen tersebut. Proses etsa untuk mendapatkan kontras dapat diklasifikasikan atas proses etsa tidak merusak  (non disctructive etching) dan proses etsa merusak (disctructive etching).
    • Etsa Tidak Merusak (Non Discructive Etching)
    Etsa tidak merusak terdiri atas etsa optik dan perantaraan kontras dari struktur dengan pencampuran permukaan secara fisik terkumpul pada permukaan spesimen yang telah dipoles. Pada etsa optik digunakan teknik pencahayaan khusus untuk menampilkan struktur mikro. Beberapa metode etsa optik adalah pencahayaan gelap (dark field illumination), polarisasi cahaya mikroskop (polarized light microscopy) dan differential interfence contrast.
    Pada penampakan kontras dengan lapisan perantara, struktur mikro ditampilkan dengan bantuan interfensi permukaan tanpa bantuan bahan kimia. Spesimen dilapisi dengan lapisan transparan yang ketebalannya kecil bila dibandingkan dengan daya pemisah dari mikroskop optik. Pada mikroskop interfensi permukaan, cahaya ynag terjadi pada sisa-sisa film dipantulkan ke permukaan perantara spesimen.
    • Etsa Merusak (Desctructive Etching)
    Etsa merusak adalah proses perusakan permukaan spesimen secara kimia agar terlihat kontras atau perbedaan intensitas dipermukaan spesimen. Etsa merusak terbagi dua metode  yaitu etsa elektrokimia (electochemical etching) dan etsa fisik
    (phisical etching). Pada etsa elektrokimia dapat diasumsikan korosi terpaksa, dimana terjadi reaksim serah terima elektron akibat adanya beda potensial daerah katoda dan anoda. Beberapa proses yang termasuk etsa elektokimia adalah etsa endapan (precipitation etching), metode pewarnaan panas (heat tinting), etsa kimia (chemical etching) dan etsa elektrolite (electrolytic  etching).
    Pada etsa fisik dihasilkan permukaan yang bebas dari sisa zat kimia dan menawarkan keuntungan jika etsa elektrokimia sulit dilakukan. Etsa ion dan etsa termal adalah teknik etsa fisik yang mengubah morfologi permukaan spesimen yang telah dipoles.


Rumus kimia


Rumus kimia (juga disebut rumus molekul) adalah cara ringkas memberikan informasi mengenai atom-atom yang menyusun suatusenyawa kimia tertentu. Untuk senyawa molekular, rumus ini mengidentifikasikan setiap unsur kimia penyusun dengan simbol kimianya dan menunjukkan jumlah atom dari setiap unsur yang ditemukan pada masing-masing molekul diskret dari senyawa tersebut. Jika suatu molekul mengandung lebih dari satu atom unsur tertentu, kuantitas ini ditandai dengan subskrip setelah simbol kimia (walaupun buku-buku abad ke-19 kadang menggunakan superskrip). Untuk senyawa ionik dan zat non-molekular lain, subskrip tersebut menandai rasio unsur-unsur dalam rumus empiris.

Misalnya: C6H12O6: glukosa

Seorang kimiawan berkebangsaan Swedia abad ke-19 bernama Jöns Jacob Berzelius adalah orang yang menemukan sistem penulisan rumus kimia.


Unsur kimia




Tabel periodik unsur kimia

Unsur kimia, atau hanya disebut unsur, adalah zat kimia yang tidak dapat dibagi lagi menjadi zat yang lebih kecil, atau tidak dapat diubah menjadi zat kimia lain dengan menggunakan metode kimia biasa.
Partikel terkecil dari unsur adalah atom. Sebuah atom terdiri atas inti atom (nukleus) dan dikelilingi oleh elektron. Inti atom terdiri atas sejumlah protondan neutron. Hingga saat ini diketahui terdapat kurang lebih 117 unsur di dunia.

Daftar isi

  [sembunyikan

[sunting]Gambaran umum

Hal yang membedakan unsur satu dengan lainnya adalah "jumlah proton" dan jumah elektron suatu unsur atau ikatan dalam inti atom tersebut. Misalnya, seluruh atom karbon memiliki proton sebanyak 6 buah, sedangkan atom oksigen memiliki proton sebanyak 8 buah. Jumlah proton pada sebuah atom dikenal dengan istilah nomor atom (dilambangkan dengan Z).
Namun demikian, atom-atom pada unsur yang sama tersebut dapat memiliki jumlah netron yang berbeda; hal ini dikenal dengan sebutan isotopMassa atom sebuah unsur (dilambangkan dengan "A") adalah massa rata-rata atom suatu unsur pada alam. Karena massa elektron sangatlah kecil, dan massa neutron hampir sama dengan massa proton, maka massa atom biasanya dinyatakan dengan jumlah proton dan neutron pada inti atom, pada isotop yang memiliki kelimpahan terbanyak di alam. Ukuran massa atom adalah satuan massa atom (smu). Beberapa isotop bersifat radioaktif, dan mengalami penguraian (peluruhan) terhadap radiasi partikel alfa atau beta.
Unsur paling ringan adalah hidrogen dan helium. Hidrogen dipercaya sebagai unsur yang ada pertama kali di jagad raya setelah terjadinya Big Bang. Seluruh unsur-unsur berat secara alami terbentuk (baik secara alami ataupun buatan) melalui berbagai metodenukleosintesis. Hingga tahun 2005, dikenal 118 unsur yang diketahui, 93 unsur diantaranya terdapat di alam, dan 23 unsur merupakan unsur buatan. Unsur buatan pertama kali diduga adalah teknetium pada tahun 1937. Seluruh unsur buatan merupakan radioaktif denganwaktu paruh yang pendek, sehingga atom-atom tersebut yang terbentuk secara alami sepertinya telah terurai.
Daftar unsur dapat dinyatakan berdasarkan namasimbol, atau nomor atom. Dalam tabel periodik, disajikan pula pengelompokan unsur-unsur yang memiliki sifat-sifat kimia yang sama.

[sunting]Tata nama

Penamaan unsur telah jauh sebelum adanya teori atom suatu zat, meski pada waktu itu belum diketahui mana yang merupakan unsur, dan mana yang merupakan senyawa. Ketika teori atom berkembang, nama-nama unsur yang telah digunakan pada masa lampau tetap dipakai. Misalnya, unsur "cuprum" dalam Bahasa Inggris dikenal dengan copper, dan dalam Bahasa Indonesia dikenal dengan istilahtembaga. Contoh lain, dalam Bahasa Jerman "Wasserstoff" berarti "hidrogen", dan "Sauerstoff" berarti "oksigen".
Nama resmi dari unsur kimia ditentukan oleh organisasi IUPAC. Menurut IUPAC, nama unsur tidak diawali dengan huruf kapital, kecuali berada di awal kalimat. Dalam paruh akhir abad ke-20, banyak laboratorium mampu menciptakan unsur baru yang memiliki tingkat peluruhan cukup tinggi untuk dijual atau disimpan. Nama-nama unsur baru ini ditetapkan pula oleh IUPAC, dan umumnya mengadopsi nama yang dipilih oleh penemu unsur tersebut. Hal ini dapat menimbulkan kontroversi grup riset mana yang asli menemukan unsur tersebut, dan penundaan penamaan unsur dalam waktu yang lama (lihat kontroversi penamaan unsur).

[sunting]Lambang kimia

Sebelum kimia menjadi bidang ilmu, ahli alkemi telah menentukan simbol-simbol baik untuk logam maupun senyawa umum lainnya. Mereka menggunakan singkatan dalam diagram atau prosedur; dan tanpa konsep mengenai suatu atom bergabung untuk membentuk molekul. Dengan perkembangan teori zat, John Dalton memperkenalkan simbol-simbol yang lebih sederhana, didasarkan oleh lingkaran, yang digunakan untuk menggambarkan molekul.
Sistem yang saat ini digunakan diperkenalkan oleh Berzelius. Dalam sistem tipografi tersebut, simbol kimia yang digunakan adalah singkatan dari nama Latin (karena waktu itu Bahasa Latin merupakan bahasa sains); misalnya Fe adalah simbol untuk unsur ferrum(besi), Cu adalah simbol untuk unsur Cuprum (tembaga), Hg adalah simbol untuk unsur hydrargyrum (air raksa), dan sebagainya.
Simbol kimia digunakan secara internasional, meski nama-nama unsur diterjemahkan antarbahasa. Huruf pertama simbol kimia ditulis dalam huruf kapital, sedangkan huruf selanjutnya (jika ada) ditulis dalam huruf kecil.

[sunting]Simbol non-unsur

Non unsur, khususnya dalam kimia organik dan organometalik, seringkali menggunakan simbol yang terinspirasi oleh simbol-simbol unsur kimia. Berikut adalah contohnya:
Cy - sikloheksil; Ph - fenil; Bz - benzoil; Bn - benzil; Cp - Siklopentadiena; Pr - propil; Me - metil; Et - etil; Tf - triflat; Ts - tosil; Hb -hemoglobin.

[sunting]Kelimpahan

UnsurPpm (w/w)
Hidrogen739,000
Helium240,000
Oksigen10,400
Karbon4,600
Neon1,340
Besi1,090
Nitrogen960
Silikon650
Magnesium580
Sulfur440
Kalium210
Nikel100

[sunting]


Penjelasan struktur tabel periodik


Jumlah kulit elektron yang dimiliki sebuah atom menentukan periode atom tersebut. Setiap kulit memiliki beberapa subkulit, yang terisi menurut urutan berikut ini, seiring dengan bertambahnya nomor atom:

1s
2s 2p
3s 3p
4s 3d 4p
5s 4d 5p
6s 4f 5d 6p
7s 5f 6d 7p
8s 5g 6f 7d 8p
...
Berdasarkan hal inilah struktur tabel disusun. Karena elektron terluar menentukan sifat kimia suatu unsur, unsur-unsur yang segolongan umumnya mempunyai sifat kimia yang mirip. Unsur-unsur segolongan yang berdekatan mempunyai sifat fisika yang mirip, meskipun massa mereka jauh berbeda. Unsur-unsur seperiode yang berdekatan mempunyai massa yang hampir sama, tetapi sifat yang berbeda.
Sebagai contoh, dalam periode kedua, yang berdekatan dengan Nitrogen (N) adalah Karbon (C) dan Oksigen (O). Meskipun massa unsur-unsur tersebut hampir sama (massanya hanya selisih beberapa satuan massa atom), mereka mempunyai sifat yang jauh berbeda, sebagaimana bisa dilihat dengan melihat alotrop mereka: oksigen diatomik adalah gas yang dapat terbakar, nitrogen diatomik adalah gas yang tak dapat terbakar, dan karbon adalah zat padat yang dapat terbakar (ya, berlian pun dapat terbakar!).
Sebaliknya, yang berdekatan dengan unsur Klorin (Cl) di tabel periodik, dalam golongan Halogen, adalah Fluorin (F) dan Bromin (Br). Meskipun massa unsur-unsur tersebut jauh berbeda, alotropnya mempunyai sifat yang sangat mirip: Semuanya bersifat sangat korosif(yakni mudah bercampur dengan logam membentuk garam logam halida); klorin dan fluorin adalah gas, sementara bromin adalah cairanbertitik didih yang rendah; sedikitnya, klorin dan bromin sangat berwarna.

[sunting]Klasifikasi

[sunting]Golongan

Kolom dalam tabel periodik disebut golongan. Ada 18 golongan dalam tabel periodik baku. Unsur-unsur yang segolongan mempunyai konfigurasi elektron valensi yang mirip, sehingga mempunyai sifat yang mirip pula. Ada tiga sistem pemberian nomor golongan. Sistem pertama memakai angka Arab dan dua sistem lainnya memakai angka Romawi. Nama dengan angka Romawi adalah nama golongan yang asli tradisional. Nama dengan angka Arab adalah sistem tatanama baru yang disarankan oleh International Union of Pure and Applied Chemistry (IUPAC). Sistem penamaan tersebut dikembangkan untuk menggantikan kedua sistem lama yang menggunakan angka Romawi karena kedua sistem tersebut membingungkan, menggunakan satu nama untuk beberapa hal yang berbeda.
Golongan bisa dianggap sebagai cara yang paling penting dari mengklasifikasi unsur. Pada beberapa golongan, unsur-unsurnya ada yang sangat mirip sifatnya dan memiliki kecenderungan sifat yang jelas jika ditelusuri menurun di dalam kolom. Golongan-golongan ini sering diberi nama umum (tak sistematis) sebagai contoh: logam alkalilogam alkali tanahhalogenkhalkogen, dan gas mulia. Beberapa golongan lainnya dalam tabel tidak menampilkan sebanyak persamaan maupun kecenderungan sifat secara vertikal (sebagai contoh Kelompok 14 dan 15), golongan ini tidak memiliki nama umum.

[sunting]Periode

Baris dalam tabel periodik disebut periode. Walaupun golongan adalah cara yang paling umum untuk mengklasifikasi unsur, ada beberapa bagian di tabel unsur yang kecenderungan sifatnya secara horisontal dan kesamaan sifatnya lebih penting dan mencolok daripada kecenderungan vertikal. Fenomena ini terjadi di blok-d (atau "logam transisi"), dan terutama blok-f, dimana lantinida dan aktinida menunjukan sifat berurutan yang sangat mencolok.

[sunting]Periodisitas Sifat Kimia

Nilai utama dari tabel periodik adalah kemampuan untuk memprediksi sifat kimia dari sebuah unsur berdasarkan lokasi di tabel. Perlu dicatat bahwa sifat kimia berubah banyak jika bergerak secara vertikal di sepanjang kolom di dalam tabel dibandingkan secara horizontal sepanjang baris.

[sunting]Kecenderungan Periodisitas dalam Golongan


Kecenderungan periodisas dari energi ionisasi
Teori struktur atom mekanika kuantum modern menjelaskan kecenderungan golongan dengan memproposisikan bahwa unsur dalam golongan yang sama memiliki konfigurasi elektron yang sama dalam kulit terluarnya, yang merupakan faktor terpenting penyebab sifat kimia yang mirip. Unsur-unsur dalam golongan yang sama juga menunjukkan pola jari-jari atomenergi ionisasi, dan elektronegativitas. Dari urutan atas ke bawah dalam golongan, jari-jari atom unsur bertambah besar. Karena lebih banyak susunan energi yang terisi, elektron valensi terletak lebih jauh dari inti. Dari urutan atas, setiap unsur memiliki energi ionisasi yang lebih rendah dari unsur sebelumnya karena lebih mudahnya sebuah elektron terlepas karena elektron terluarnya yang semakin jauh dari inti. Demikian pula, suatu golongan juga menampilkan penurunan elektronegativitas dari urutan atas ke bawah karena peningkatan jarak antara elektron valensi dan inti.

[sunting]Kecenderungan Periodisasi Periode

Unsur-unsur dalam periode yang sama memiliki kecenderungan dalam jari-jari atom, energi ionisasi, afinitas elektron dan elektronegativitas. Dari kiri ke kanan, jari-jari atom biasanya menurun. Hal ini terjadi karena setiap unsur mendapat tambahan proton dan elektron yang menyebabkan elektron tertarik lebih dekat ke inti. Penurunan jari-jari atom ini juga menyebabkan meningkatnya energi ionisasi jika bergerak dari urutan kiri ke kanan. Semakin rapat terikatnya suatu unsur, semakin banyak energi yang diperlukan untuk melepaskan sebuah elektron. Demikian juga elektronegativitas, yang meningkat bersamaan dengan energi ionisasi karena tarikan oleh inti pada elektron. Afinitas elektron juga mempunyai kecenderungan, walau tidak semenyolok pada sebuah periode. Logam (bagian kiri dari perioda) pada umumnya memiliki afinitas elektron yang lebih rendah dibandingkan dengan unsur nonmetal (periode sebelah kanan), dengan pengecualian gas mulia.

[sunting]Sejarah

Tabel periodik pada mulanya diciptakan tanpa mengetahui struktur dalam atom: jika unsur-unsur diurutkan berdasarkan massa atomlalu dibuat grafik yang menggambarkan hubungan antara beberapa sifat tertentu dan massa atom unsur-unsur tersebut, akan terlihat suatu perulangan atau periodisitas sifat-sifat tadi sebagai fungsi dari massa atom. Orang pertama yang mengenali keteraturan tersebut adalah ahli kimia Jerman, yaitu Johann Wolfgang Döbereiner, yang pada tahun 1829 memperhatikan adanya beberapa triade unsur-unsur yang hampir sama.
Beberapa triade
UnsurMassa atomKepadatan
Klorin35,50,00156 g/cm3
Bromin79,90,00312 g/cm3
Iodin126,90,00495 g/cm3
Kalsium40,11,55 g/cm3
Stronsium87,62,6 g/cm3
Barium1373,5 g/cm3
Temuan ini kemudian diikuti oleh ahli kimia Inggris, yaitu John Alexander Reina Newlands, yang pada tahun 1865 memperhatikan bahwa unsur-unsur yang bersifat mirip ini berulang dalam interval delapan, yang ia persamakan dengan oktaf musik, meskipun hukum oktaf-nya diejek oleh rekan sejawatnya. Akhirnya, pada tahun 1869, ahli kimia Jerman Lothar Meyer dan ahli kimia Rusia Dmitry Ivanovich Mendeleyev hampir secara bersamaan mengembangkan tabel periodik pertama, mengurutkan unsur-unsur berdasarkan massanya. Akan tetapi, Mendeleyev meletakkan beberapa unsur menyimpang dari aturan urutan massa agar unsur-unsur tersebut cocok dengan sifat-sifat tetangganya dalam tabel, membetulkan kesalahan beberapa nilai massa atom, dan meramalkan keberadaan dan sifat-sifat beberapa unsur baru dalam sel-sel kosong di tabelnya. Keputusan Mendeleyev itu belakangan terbukti benar dengan ditemukannya struktur elektronik unsur-unsur pada akhir abad ke-19 dan awal abad ke-20.

[sunting]

Geometri molekul dan rumus struktur


Isobutana
Rumus molekul: C4H10
Rumus semi-struktur: (CH3)3CH

Butana
Rumus moleku: C4H10
Rumus semi-struktur: CH3CH2CH2CH3
Konektivitas dari sebuah molekul akan sangat berpengaruh pada sifat-sifat fisik dan kimianya. 2 molekul yang tersusun atas atom yang sama dengan jumlah yang sama (misalnya sepasang isomer) dapat memiliki sifat yang sama sekali berbeda jika atom-atomnya tersambung berbeda atau posisinya berpindah. Dalam beberapa kasus, rumus struktur cukup berguna karena dapat menggambarkan atom mana yang tersambung pada atom mana.
Rumus kimia dapat menjelaskan informasi tentang tipe dan susunan ikatan dalam senyawa tersebut. Misalnya, etana terdiri dari 2 atom karbon yang berikatan tunggal satu sama lain, dengan tiap atom karbon juga berikatan dengan 3 atom hidrogen. Rumus kimianya dapat dituliskan CH3CH3. Contoh lainnya, etena mempunyai ikatan rangkap dua di antara atom karbonnya (sehingga tiap atom karbon hanya berikatan dengan 2 atom hidrogen). Rumus kimia etena adalah: CH2CH2, dapat juga dituliskan H2C=CH2 atau H2C::CH2. Gambar 2 garis atau 2 pasang titik dua menunjukkan ikatan rangkap. Untukikatan rangkap tiga, dapat dilambangkan dengan tiga garis atau tiga titik dua (:::). Setiap garis atau titik dua melambangkan satu ikatan.

No comments:

Post a Comment